The platform to create fast and accurate vector annotations.
Support for bounding boxes, polygons, polylines, and keypoints.
Label in-house or with an external workforce.
Segments.ai supports labeling sequences of images. Use keyframe interpolation to speed up bounding box labeling.
Learn moreLabel training data faster by leveraging your model. Upload model predictions for new data and correct the predictions in the labeling interface.
Learn more
from segments import SegmentsClient
client = SegmentsClient("api_key")
dataset = client.add_dataset(
"dataset_name",
task_type,
task_attributes
)
sample = client.add_sample(
"user/dataset_name",
"sample_name",
attributes
)
Integrate data labeling into your existing ML pipelines and workflows using our simple yet powerful Python SDK.
Upload data, download labels, and manage datasets programmatically
Automatically trigger actions using webhooks
Connect your cloud provider (AWS, Google Cloud, Azure)
Export to popular ML frameworks (PyTorch, TensorFlow, Hugging Face 🤗)
Onboard your own workforce or use one of our workforce partners. Our management tools make it easy to label and review large datasets together.
Give collaborators access to specific datasets and choose their permissions
Onboard an external workforce from our labeling service partners
Set up a reviewing step and communicate with labelers via issues
Track labeling performance through metrics and custom dashboards.
Implement active learning by using your model predictions to find failure cases and to speed up labeling.
Label images and point clouds on Segments.ai
Train a model and keep it on your side. Only upload model predictions
Compare predictions with ground-truth labels and use our search syntax to find failure cases
Use model predictions as prelabels to speed up labeling
Try Segments.ai free for 14 days. No credit card required.
Start free trial